New Hardness Results in Rainbow Connectivity
نویسندگان
چکیده
A path in an edge colored graph is said to be a rainbow path if no two edges on the path have the same color. An edge colored graph is (strongly) rainbow connected if there exists a (geodesic) rainbow path between every pair of vertices. The (strong) rainbow connectivity of a graph G, denoted by (src(G), respectively) rc(G) is the smallest number of colors required to edge color the graph such that the graph is (strong) rainbow connected. It is known that for even k to decide whether the rainbow connectivity of a graph is at most k or not is NP-hard. It was conjectured that for all k, to decide whether rc(G) ≤ k is NP-hard. In this paper we prove this conjecture. We also show that it is NP-hard to decide whether src(G) ≤ k or not even when G is a
منابع مشابه
Hardness and Algorithms for Rainbow Connectivity
An edge-colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connectivity of a connected graph G, denoted rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In addition to being a natural combinatorial problem, the rainbow connectivity problem is motivated by applications in cell...
متن کاملFurther Hardness Results on Rainbow and Strong Rainbow Connectivity
A path in an edge-colored graph is rainbow if no two edges of it are colored the same. The graph is said to be rainbow connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph is strong rainbow connected. We consider the complexity of the problem of deciding if a given edge-colored graph is rainbow or stro...
متن کاملHardness and Parameterized Algorithms on Rainbow Connectivity problem
A path in an edge colored graph is said to be a rainbow path if no two edges on the path have the same color. An edge colored graph is (strongly) rainbow connected if there exists a (geodesic) rainbow path between every pair of vertices. The (strong) rainbow connectivity of a graph G, denoted by (src(G), respectively) rc(G) is the smallest number of colors required to edge color the graph such ...
متن کاملRainbow Connectivity: Hardness and Tractability
A path in an edge colored graph is said to be a rainbow path if no two edges on the path have the same color. An edge colored graph is (strongly) rainbow connected if there exists a (geodesic) rainbow path between every pair of vertices. The (strong) rainbow connectivity of a graph G, denoted by (src(G), respectively) rc(G) is the smallest number of colors required to edge color the graph such ...
متن کاملFurther hardness results on the rainbow vertex-connection number of graphs
A vertex-colored graph G is rainbow vertex-connected if any pair of vertices in G are connected by a path whose internal vertices have distinct colors, which was introduced by Krivelevich and Yuster. The rainbow vertex-connection number of a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex-connected. In a previous paper we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1104.2074 شماره
صفحات -
تاریخ انتشار 2011